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Abstract
Starting from a discrete isospectral problem, integrable positive and negative
relativistic Toda type lattice hierarchies are derived. The two lattice hierarchies
are proven to have discrete zero-curvature representations associated with a
discrete spectral problem, and the positive and negative lattice hierarchies
correspond to positive and negative power expansions of Lax operators with
respect to the spectral parameter, respectively. The integrable positive and
negative coupling systems of the resulting hierarchies are constructed through
enlarging Lax pairs. In addition, with the help of gauge transformations of
spectral problems, a Darboux transformation is established for the relativistic
Toda type lattice. As an application, an exact solution is explicitly presented.

PACS numbers: 02.30.Ik, 05.45.Yv

1. Introduction

Nonlinear integrable lattice soliton equations are well known to be used for modelling physical
phenomena such as particle vibrations in lattice, currents in electrical networks, pulses in
biological chains, etc. The study of integrable systems of lattice versions, therefore, has
aroused increasing interest in the last few years. Since the original work of Fermi, Pasta
and Ulam in the 1950s [1], several physically important nonlinear integrable lattice soliton
equations have been obtained and systematically discussed [2–11]. The discrete matrix spectral
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problem, i.e., the Lax pair of lattice soliton equation plays a crucial role in the treatment of
lattice soliton theory. From the associated Lax pairs, many new lattice soliton systems and
the interrelated nice properties, such as the nonlinearization, the master symmetries, the
infinite conservation laws, the Darboux transformation and so on, can usually be investigated
conveniently.

In addition, there is another natural problem, that is how to extend the known lattice
systems to larger and complicated models from points of view of both potentials and
dimensions. Recently, the study of integrable couplings of soliton equations has attracted
much attention. The study of integrable couplings of soliton equations originates from the
investigations into the symmetry problems and associated centreless Virasoro algebras [12]. It
can be viewed as an approach to obtain new larger integrable hierarchies in the Lax sense and
shows one plenty of integrable structures that the multiplicity of integrable systems brings.

In the field of nonlinear lattice theory, moreover, to obtain exact solutions for the lattice
equations is always one of the most fundamental and significant topics. While there has been
considerable work done on finding exact solutions [13–15] to lattice equations, as far as we
could verify, the Darboux transformation technique is still an effective method which can
always be used to explicitly present the exact solutions for lattice soliton equations and has
also been widely used by many authors [10, 11, 16–21, and references therein].

The present paper is devoted to introducing a discrete isospectral problem

Eϕn(λ) = Un(un, λ)ϕn(λ) =
(

0 1
λrn λ + sn

)
ϕn(λ), ϕn(λ) =

(
ϕ1

n(λ)

ϕ2
n(λ)

)
, (1)

where the shift operator E, the inverse of E and the difference operator D are defined as
Efn = f (n+1) = fn+1, E

−1fn = fn−1,Dfn = fn+1 −fn = (E−1)fn, n ∈ Z, un = (rn, sn)
T

is a two-component potential function vector defined over R × Z and rapidly vanishes if
|n| → ∞ and λ is the spectral parameter with λt = 0. By means of constructing a proper
continuous time evolution equation

d

dt
ϕn(λ) = �{m}

n (un, λ)ϕn(λ), (2)

where �
{m}
n (un, λ) is a suitable 2 × 2 matrix, and using the discrete zero-curvature equation

d

dt
Un − (

E�{m}
n

)
Un + Un�

{m}
n = 0, (3)

a pair of positive and negative hierarchies of integrable nonlinear lattice models is derived
[4, 8]. As the typical cases, the first two nonlinear lattice equations are given as follows,
respectively,

rnt
= rn(sn−1 − sn) + rn(rn−1 − rn+1), snt

= sn(rn − rn+1), (4a)

and

rnt
= rn

sn−1
− rn

sn

, snt
= rn+1

sn+1
− rn

sn−1
. (4b)

It is shown that the resulting lattice equations correspond to positive and negative power
expansions of Lax operators with respect to the spectral parameter, respectively, and each
equation in resulting hierarchies is Liouville integrable. In virtue of [7], the lattice
equation (4a) can be called relativistic Toda type lattice, and equation (4b) as its negative flow.
Through enlarging associated Lax pair [22–25], the integrable positive and negative coupling
systems of relativistic Toda type lattice hierarchy are constructed. Furthermore, by virtue of
gauge transformation, a Darboux transformation for spectral problem (1) is constructed. As
application, exact solutions of positive relativistic Toda type lattice equations (4a) are given.
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2. Integrable positive and negative relativistic Toda type lattices

In this section, we would like to derive the positive and negative relativistic Toda type lattice
hierarchies based on the spectral problem (1). We first solve the stationary discrete zero-
curvature equation [3]

(EVn)Un − UnVn = 0, (5)

where

Vn =
∑
m�0

(
a(m)

n λ−m b(m)
n λ−m

c(m)
n λ−m+1 −a(m)

n λ−m

)
.

Then, equation (5) leads to the initial relations

a(0)
n = − 1

2 , b(0)
n = c(0)

n = 0,

and the recursion relations

rnb
(m)
n+1 = c(m)

n ,

b
(m+1)
n+1 + a

(m)
n+1 + a(m)

n + snb
(m)
n+1 = 0,

c(m+1)
n + rn

(
a

(m)
n+1 + a(m)

n

)
+ snc

(m)
n = 0,

a
(m+1)
n+1 − a(m+1)

n = c
(m+1)
n+1 − rnb

(m+1)
n − sn

(
a

(m)
n+1 − a(m)

n

)
,

m � 0, (6)

which are all difference polynomials in un with respect to the lattice variable n. Under
the initial-value conditions of selecting zero constants for the inverse operation of the
difference operator D in computing a(m)

n ,m � 1, the recursion relations (6) uniquely determine
a(m)

n , b(m)
n , c(m)

n ,m � 1 and the first few quantities are given by

a(1)
n = rn, b

(1)
n = 1, c(1)

n = rn

b
(2)
n+1 = −rn − rn+1 − sn, c

(2)
n = −rn(rn + rn+1) − rnsn,

a(2)
n = −rnsn − rnsn−1 − r2

n − rnrn−1 − rnrn+1 . . . .

Moreover, from (5), we know [3, 8] that (E − 1) tr
(
V k

n

) = 0 for all k � 1. In particular, we
have tr

(
V 2

n

) = 2
(
a2

n + λbncn

)
is a constant, and let us say γ . Then, we obtain a recursion

relation for a(m)
n

a(m+1)
n =

m∑
i=1

a(i)
n a(m−i+1)

n +
m+1∑
i=1

b(i)
n c(m−i+1)

n − 1

2
γ, m � 1. (7)

This, together with the first two equations in (6), implies that all lattice functions
a(m)

n , b(m)
n , c(m)

n ,m � 1, are local and they are just difference polynomials in rn and sn.
Now, we set

(λmVn)+ =
m∑

i=0

(
a(i)

n λm−i b(i)
n λm−i

c(i)
n λm−i+1 −a(i)

n λm−i

)
.

It is not difficult to find

(E(λmVn)+)Un − Un(λ
mVn)+ =

(
0 −b

(m+1)
n+1

λc(m+1)
n sn

(
a(m)

n − a
(m)
n+1

)) .

So we introduce the modification as follows:

�n =
(

b(m+1)
n 0

0 0

)
,
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and define [3]

V {+m}
n = (λmVn)+ + �n, m � 0. (8)

Through a direct calculation, we have(
EV {+m}

n

)
Un − UnV

{+m}
n =

(
0 0

λ
(
c(m+1)
n − rb(m+1)

n

)
sn

(
a(m)

n − a
(m)
n+1

)) ,

which is consistent with Untm
. Then, we introduce the following auxiliary spectral problem:

ϕntm
= V {+m}

n ϕn, m � 0, (9)

the compatibility conditions of (1) and (9), i.e., the discrete zero-curvature equations

Untm
= (

EV {+m}
n

)
Un − UnV

{+m}
n , (10)

give rise to the following positive hierarchy of lattice soliton equations:{
rntm

= c(m+1)
n ,

sntm
= sn

(
a(m)

n − a
(m)
n+1

)
,

m � 0. (11)

When m = 1, the resulting lattice system (11) reduces to the positive relativistic Toda type
lattice equation (4a). The temporal evolution laws of equation (4a) are as follows:

(ϕn(λ))t1 = V {+1}
n (u, λ)ϕn(λ), V {+1}

n =
(− 1

2λ − rn−1 − sn−1 1
λrn

1
2λ − rn

)
. (12)

So, one can call the lattice system (11) as relativistic Toda type lattice hierarchy.
In what follows, we would like to construct the Hamiltonian structure for the lattice system

(11). To this end, we apply the trace identity [3]

δ

δun

∑
k∈Z

〈
�n,

∂Un

∂λ

〉
(k) =

(
λ−ε

(
∂

∂λ

)
λε

) 〈
�n,

∂Un

∂uni

〉
, i = 1, 2,

where �n = VnU
−1
n and 〈A,B〉 = tr(AB), where A,B are some order square matrix. Through

direct calculations, system (11) has a bi-Hamiltonian structure [4]

untm
=

(
rn

sn

)
tm

= J1
δH̃m+1

δun

= J1

(
a

(m+1)
n

rn

c
(m+1)
n

rn

)
= M

(
a

(m)
n

rn

c
(m)
n

rn

)
, m � 0, (13)

where variational derivatives are defined by

δH̃

δun

=
(

δH̃

δrn

,
δH̃

δsn

)T

,
δH̃

δrn

=
∑
m∈Z

E−m

(
∂H̃

∂rn+m

)
,

δH̃

δsn

=
∑
m∈Z

E−m

(
∂H̃

∂sn+m

)
,

the Hamiltonian operators J1,M and the Hamiltonian functionals H̃m are given by

J1 =
(

0 rn(1 − E−1)

(E − 1)rn rnE
−1 − Ern

)
, M =

(
rn(E

−1 − E)rn rn(1 − E−1)sn

sn(E − 1)rn 0

)
, (14)

H̃ 0 = −1

2

∑
k∈Z

(ln rn) (k), H̃m =
∑
k∈Z

(
− rna

(m)
n + c(m)

n

mrn

)
(k), m � 1.

Now, let us note

δH̃m

δun

= 	
δH̃m−1

δun

, 	 = J−1
1 M =

(
	11 	12

	21 	22

)
. (15)
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With the help of recursion relations (6), we have

	11 = −(1 + E)rn − 1

rn

(E − 1)−1[rn(E − E−1)rn − sn(1 − E)rn],

	12 = −sn − 1

rn

(E − 1)−1rn(1 − E−1)sn,

	21 = −(1 + E)rn, 	22 = −sn.

Therefore, starting from the discrete spectral problem (1), the positive lattice hierarchy
(11) is derived. It is easy to verify that the positive hierarchy has the discrete zero-curvature
representation (10). And, every soliton equation in (11) or the discrete Hamiltonian system
(13) is a discrete Liouville integrable system [3]. Further, it is easy to verify that the operator
	 is invertible, and its inverse operator can be given by


 := 	−1 =
(


11 
12


21 
22

)
, (16)

with


11 = 1

rn

(E − 1)−1 1

sn

(1 − E)rn,


12 = 1

rn

(E − 1)−1 1

sn

(Ern − rnE
−1),


21 = − 1

sn

(1 + E)(E − 1)−1 rn

sn

(1 − E)rn,


22 = − 1

sn

(1 + E)(E − 1)−1 1

sn

(Ern − rnE
−1) − 1

sn

.

Now, we would like to briefly derive the negative hierarchy of lattice soliton equations
based on the spectral problem (1). To this end, we introduce the auxiliary spectral matrix

Wn =
∞∑

m=0

(
A(m)

n λm B(m)
n λm

C(m)
n λm+1 −A(m)

n λm

)
.

Hence, the stationary discrete zero-curvature equation,

(EWn)Un − UnWn = 0,

implies that

A(0)
n = −1

2
, B

(0)
n+1 = 1

sn

, C(0)
n = rn

sn

, (17)

rnB
(m)
n+1 = C(m)

n ,

A
(m+1)
n+1 + A(m+1)

n + B
(m)
n+1 + snB

(m+1)
n+1 = 0,

rn

(
A

(m+1)
n+1 + A(m+1)

n

)
+ C(m)

n + snC
(m+1)
n = 0,

sn

(
A

(m+1)
n+1 − A(m+1)

n

) = C
(m)
n+1 − rnB

(m)
n + A(m)

n − A
(m)
n+1,

m � 0, (18)

which uniquely define A(m)
n , B(m)

n , C(m)
n ,m � 1 and the first few quantities are as follows:

A(1)
n = rn

sn−1sn

,

snB
(1)
n+1 −

(
rn

sn−1sn

+
rn+1

snsn+1

)
− 1

sn

,

snC
(1)
n = −rn

(
rn

sn−1sn

+
rn+1

snsn+1

)
− rn

sn

, . . . .
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Similarly, all lattice functions A(m)
n , B(m)

n , C(m)
n ,m � 1, defined by equations (18) are local

and they are just difference polynomials in rn and sn. Now, we set

W {−m}
n =

m∑
i=0

(
A(i)

n λ−m+i−1 − B(m)
n B(i)

n λ−m+i−1

C(i)
n λ−m+i −A(i)

n λ−m+i−1

)
, m � 0. (19)

Then, the discrete zero-curvature equations

Untm
= (

EW {−m}
n

)
Un − UnW

{−m}
n , (20)

lead to the following negative hierarchy of lattice soliton equations:{
rntm

= rnB
(m)
n − C(m)

n ,

sntm
= sn

(
A

(m+1)
n+1 − A(m+1)

n

)
,

m � 0, (21)

where the first nonlinear lattice system, when m = 0, is given by (4b) coming from the negative
lattice hierarchy (21). The temporal evolution laws of equation (4b) can be shown as

(ϕn(λ))t0 = W {0}
n (u, λ)ϕn(λ), W {0}

n =
(− 1

2λ
− 1

sn−1

1
sn−1λ

rn

sn

1
2λ

)
. (22)

By using equations (18), the discrete system (21) can be rewritten in the Hamiltonian
form

utm =
(

rn

sn

)
tm

= J2
δG̃m

δun

= J2

A
(m)
n

rn

C
(m)
n

rn

 = J2

m

(− 1
2rn

1
sn

)
, m � 1, (23)

where

G̃m =
∑
k∈Z

(
rnA

(m)
n + C(m−1)

n

mrn

)
(k),m � 1, G̃0 =

∑
k∈Z

(
ln(rn)

− 1
2 sn

)
(k),

where J2 = −J1 is obviously a Hamiltonian operator and 
 is defined by (16). Moreover, we
obtain

N = J2
 =
(

N11 N12

N21 N22

)
,

with

N11 = −rn(1 − E−1)
1

sn

(1 + E)(E − 1)−1 1

sn

(1 − E)rn,

N12 = rn(1 − E−1)
1

sn

[
1 − (1 + E)(E − 1)−1 1

sn

(Ern − rnE
−1)

]
,

N21 =
[

1 − (rnE
−1 − Ern)

1

sn

(1 + E)(E − 1)−1

]
1

sn

(1 − E)rn,

N22 = (rnE
−1 − Ern)

1

sn

(1 + E)(1 − E)−1 1

sn

(Ern − rnE
−1)

+
1

sn

(Ern − rnE
−1) − (rnE

−1 − Ern)
1

sn

.

It is not difficult to verify that N is a skew-symmetry operator. Hence, similarly, from the
discrete spectral problem (1), the negative lattice hierarchy (21) is derived. It is shown that
the negative hierarchy has the discrete zero-curvature representation (20). And, every soliton
equation in (21) or the discrete Hamiltonian system (23) possesses the Liouville integrability
[3].
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It is known that if J is a Hamiltonian operator, then[
J

δH̃ 1

δun

, J
δH̃ 2

δun

]
= J

δ{H̃ 1, H̃ 2}J
δun

,

where the commutator is defined by

[X,�] := ∂

∂ε
(X(un + ε�) − �(un + εX))|ε=0.

Thus, for the two hierarchies of lattice equations, we have

[Xm,Xl] =
[
J1

δH̃m

δun

, J1
δH̃ l

δun

]
= J1

δ{H̃m, H̃ l}J1

δun

, m, l � 0,

and

[�m,�l] =
[
J2

δG̃m

δun

, J2
δG̃l

δun

]
= J2

δ{G̃m, G̃l}J2

δun

, m, l � 0,

in which the commutativity of the Hamiltonian functionals is a consequence of the recursion
relation

δH̃m+1

δun

= 	
δH̃m

δun

,
δG̃m+1

δun

= 

δG̃m

δun

, m � 0.

Therefore, {Xm}∞m=0 and {H̃m}∞m=0 are infinitely many commuting symmetries and infinitely
many commuting conserved functionals of the positive hierarchy (11), and {�m}∞m=0
and {G̃m}∞m=0 are infinitely many commuting symmetries and infinitely many commuting
conserved functionals of the negative hierarchy (21).

3. Integrable positive and negative coupling systems for the lattice hierarchy (11)

Mathematically, for a given integrable lattice hierarchy of evolution type

ut = K(u) = K(. . . , E−1u, u,Eu, . . .), (24)

we actually want to construct a new bigger, triangular system

ut = K(u), vt = S(u, v), (25)

as an integrable coupling of the former system (24) if it is still integrable. The vector-
value function S should satisfy the non-triviality condition ∂S

∂[u] �= 0, where [u] denotes a

vector function consisting of all (u, v,Eu,Ev,E−1u,E−1v, . . .). How to construct integrable
couplings for a given system is a primary problem. Recently, Ma [22] proposed a method to
obtain integrable coupling systems, through enlarging associated spectral problems, for known
integrable equations, by means of which the integrable couplings of AKNS hierarchy and
multi-component version of AKNS equations [23] are successfully investigated, respectively.
In [24], authors have first extended the procedure to the semi-discrete systems, where the
integrable coupling of generalized Toda lattice is discussed. More recently, an interesting
conclusion, proposed by Sakovich, shows that this method also gives some non-integrable
systems as well [26].

In this section, we would like to construct the positive and negative integrable coupling
systems for the relativistic Toda type lattice hierarchy (11) through enlarging spectral problem
(1). To this end, we consider the enlarged spectral problem

Eϕ̄n(λ) = Ūn(ūn, λ)ϕ̄n(λ) =
 0 1 0

λrn λ + sn wnλ

0 0 0

 ϕ̄n(λ), (26)

where ūn = (rn, sn, wn)
T and ϕ̄n(λ) = (

ϕ̄1
n(λ), ϕ̄2

n(λ), ϕ̄3
n(λ)

)T
.
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Let

ϕ̄ntm
(λ) = V̄ {+m}

n (ūn, λ)ϕ̄(λ), (27)

with

V̄ {+m}
n =

m∑
i=0

a(i)
n λm−i + b(m+1)

n b(i)
n λm−i d(i)

n λm−i

c(i)
n λm−i+1 −a(i)

n λm−i f (i)
n λm−i+1

0 0 0

 , m � 0. (28)

Then a(m)
n , b(m)

n , c(m)
n , d(m)

n , f (m)
n ,m � 0 satisfy the following initial relations:

a(0)
n = −1

2
, b(0)

n = c(0)
n = f (0)

n = 0, d(0)
n = − wn

2rn

,

and the recursion relations

rnb
(m)
n+1 = c(m)

n ,

b
(m+1)
n+1 + a

(m)
n+1 + a(m)

n + snb
(m)
n+1 = 0,

c(m+1)
n + rn

(
a

(m)
n+1 + a(m)

n

)
+ snc

(m)
n = 0,

a
(m+1)
n+1 − a(m+1)

n = c
(m+1)
n+1 − rnb

(m+1)
n − sn

(
a

(m)
n+1 − a(m)

n

)
,

wnb
(m+1)
n+1 = f (m+1)

n ,

wna
(m)
n+1 + rnd

(m)
n + snf

(m)
n + f (m+1)

n = 0.

m � 0, (29)

From the fifth and second equalities in (29), we have

f (m+1)
n = −wn

(
a

(m)
n+1 + a(m)

n

) − snwnb
(m)
n+1,

which, noting the sixth equality in (29), gives

rnd
(m)
n = wn

(
a(m)

n + snb
(m)
n+1

) − snf
(m)
n ,

which guarantees the solvability of the quantities d(m)
n ,m � 0. The enlarged discrete zero-

curvature equations

Ūntm
= (

EV̄ {+m}
n

)
Ūn − ŪnV̄

{+m}
n , m � 0,

give rise to the following positive hierarchy of lattice soliton equations

ūntm
=

rn

sn

wn


tm

=

 c(m+1)
n

sn

(
a(m)

n − a
(m)
n+1

)
f (m+1)

n

 = J̄ 1


a

(m+1)
n

rn

c
(m+1)
n

rn

b
(m+1)
n+1

 = J̄ 1	̄


a

(m)
n

rn

c
(m)
n

rn

b
(m)
n+1

 , m � 0. (30)

Here

J̄ 1 =
(

J1 0
0 wn

)
,

where J1 is defined by (14) and

	̄ =
(

	 0
	̄21 −sn

)
, 	̄21 = (−(1 + E)rn, 0),

where 	 is defined by equation (15).
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According to the definition of integrable coupling [12], equation (30) is a kind of integrable
coupling of equation (11). When m = 1, the resulting lattice system (30) reduces to the first
nonlinear lattice equation

rnt
= rn(sn−1 − sn) + rn(rn−1 − rn+1),

snt
= sn(rn − rn+1),

wnt
= −wn(rn+1 + rn) − wnsn,

(31)

which is the integrable coupling system of lattice equation (4a) and will be equation (4a) when
we set wn = 0. It is easy to verify, noting the establishment of the enlarged temporal matrix,
that the coupling system (30) corresponds to the positive power expansion of Lax operators
with respect to the spectral parameter. It, therefore, can be called integrable positive coupling
system of hierarchy (11). And equation (31) is the integrable positive coupling of the lattice
equation (4a).

In what follows, the negative integrable coupling system will be deduced starting from
the enlarged spectral problem (26). In order to do so, we set

ϕ̄ntm
(λ) = W̄ {−m}

n (ūn, λ)ϕ̄(λ), (32)

with

W̄ {−m}
n =

m∑
i=0

A(i)
n λ−m+i−1 − B(m)

n B(i)
n λ−m+i−1 D(i)

n λ−m+i−1

C(i)
n λ−m+i −A(i)

n λ−m+i−1 F (i)
n λ−m+i

0 0 0

 , m � 0. (33)

Then A(m)
n , B(m)

n , C(m)
n ,D(m)

n , F (m)
n ,m � 0 satisfy the following initial relations

A(0)
n = −1

2
, B

(0)
n+1 = 1

sn

, C(0)
n = rn

sn

, D(0)
n = − wn

2rn

, F (0)
n = wn

sn

,

and the recursion relations

rnB
(m)
n+1 = C(m)

n ,

A
(m+1)
n+1 + A(m+1)

n + B
(m)
n+1 + snB

(m+1)
n+1 = 0,

rn

(
A

(m+1)
n+1 + A(m+1)

n

)
+ C(m)

n + snC
(m+1)
n = 0,

sn

(
A

(m+1)
n+1 − A(m+1)

n

) = C
(m)
n+1 − rnB

(m)
n + A(m)

n − A
(m)
n+1,

wnB
(m)
n+1 = F (m)

n ,

wnA
(m)
n+1 + rnD

(m+1)
n + snF

(m+1)
n + F (m)

n = 0.

m � 0, (34)

The enlarged discrete zero-curvature equations

Ūntm
= (

EW̄ {−m}
n

)
Ūn − ŪnW̄

{−m}
n , m � 0,

give rise to the following negative hierarchy of lattice soliton equations:

ūntm
=

rn

sn

wn


tm

=


rnB

(m)
n − C(m)

n

sn

(
A

(m+1)
n+1 − A(m+1)

n

)
−F (m)

n

 = J̄ 2


A

(m)
n

rn

C
(m)
n

rn

B
(m)
n+1

 = J̄ 2
̄


A

(m−1)
n

rn

C
(m−1)
n

rn

B
(m−1)
n+1

 , m � 0,

(35)

where J̄ 2 = −J̄ 1, and J̄ 1 is defined by (30) and


̄ =
(


 0


̄21 
̄22

)
, 
̄21 = (


̄1
21, 
̄

2
21

)
,
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with


̄1
21 = − 1

sn

(1 + E)(E − 1)−1 1

sn

(1 − E)rn,


̄2
21 = − 1

sn

(1 + E)(E − 1)−1 1

sn

Ern,


̄22 = 1

sn

(1 + E)(E − 1)−1 1

sn

rnE
−1 − 1

sn

.

where 
 is same as that of equation (16).
Hence, in light with the construction of the enlarged lattice system (35), it is a kind of

negative integrable coupling of equation (11). When m = 0, the resulting lattice system (35)
reduces to the first nonlinear lattice equation

rnt
= rn

sn−1
− rn

sn
,

snt
= rn+1

sn+1
− rn

sn−1
,

wnt
= −wn

sn
,

(36)

the negative integrable coupling system of equation (4a). It is easy to verify that system (36)
is an enlarged system of lattice equation (4b) and will be equation (4b) when we set wn = 0.

4. A Darboux transformation and soliton solutions

In this section, a Darboux transformation (DT) for the relativistic Toda type lattice
equation (4a) will be established. To this end, we first assume that there is a gauge
transformation

ϕ̃n = Tnϕn, (37)

which can transform eigenvalue problem (1) and the auxiliary problem (12) into

ϕ̃n+1 = Ũnϕ̃n, ϕ̃nt = Ṽ {+1}
n ϕ̃n,

respectively, with

Ũn = Tn+1UnT
−1
n , Ṽ {+1}

n = (
Tnt + TnV

{+1}
n

)
T −1

n , (38)

satisfying the fact that Ũn, Ṽ
{+1}
n and Un, V

{+1}
n have the same schedules, respectively.

Let φn = (
φ1

n, φ
2
n

)T
, ψn = (

ψ1
n , ψ2

n

)T
be two background solutions of (1) and (12) and

use (φn, ψn) to define a 2 × 2 matrix Tn by

Tn =
(

(1 − t12(n))λ + t11(n) t12(n)

λt21(n) λ + t22(n)

)
. (39)

We are going to express the coefficients of Tn by φn and ψn. In order to do so, we assume that
λ1 and λ2 are two solutions of det Tn = 0. When λ = λi (i = 1, 2), we have

ϕ̃n = Tnϕn

=
(

(1 − t12(n))λiφ
1
n + φ1

nt11(n) + φ2
nt12(n) (1 − t12(n))λiψ

1
n + ψ1

n t11(n) + ψ2
n t12(n)

λiφ
1
nt21(n) + λiφ

2
n + φ2

nt22(n) λiψ
1
n t21(n) + λiψ

2
n + ψ2

n t22(n)

)
,

where two rows in matrix ϕ̃n are linear correlated. Hence, there must be coefficients assumed
γi (i = 1, 2) such that

(1 − t12(n))λi + t11(n) + αi(n)t12(n) = 0,

λt21(n) + αi(n)(λi + t22(n)) = 0,
(40)
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with

αi(n) = φ2
n(λi) − γiψ

2
n(λi)

φ1
n(λi) − γiψ1

n(λi)
, (i = 1, 2). (41)

A direct calculation for equation (40) gives us

t11(n) = α1(n)λ2 − α2(n)λ1

λ1 − λ2 + α2(n) − α1(n)
, t12(n) = λ1 − λ2

λ1 − λ2 + α2(n) − α1(n)
,

(42)
t21(n) = (λ2 − λ1)α1(n)α2(n)

λ1α2(n) − λ2α1(n)
, t22(n) = λ1λ2(α1(n) − α2(n))

λ1α2(n) − λ2α1(n)
,

where the parameters λi and γi (λ1 �= λ2, γ1 �= γ2) are suitably chosen such that all the
denominators in (41), (42) are non-zero. Equations (1) and (41) present

αi(n + 1) = µi(n)/νi(n), i = 1, 2, (43)

with {
µi(n) = λirn + αi(n)(λi + sn),

νi(n) = αi(n).

By using equations (43) and (42), we have

t11(n + 1) = µ1(n)ν2(n)λ2−µ2(n)ν1(n)λ1

ν1(n)ν2(n)(λ1−λ2)+µ2(n)ν1(n)−µ1(n)ν2(n)
,

t12(n + 1) = (λ2−λ1)ν1(n)ν2(n)

ν1(n)ν2(n)(λ1−λ2)+µ2(n)ν1(n)−µ1(n)ν2(n)
,

t21(n + 1) = (λ2−λ1)µ1(n)µ2(n)

λ1µ2(n)ν1(n)−λ2µ1(n)ν2(n)
,

t22(n + 1) = λ1λ2(µ1(n)ν2(n)−µ2(n)ν1(n))

λ1µ2(n)ν1(n)−λ2µ1(n)ν2(n)
.

(44)

Through direct but tedious calculations, from (42) and (44), we obtain the following equalities:

rnt12(n + 1) − t21(n) = 0, t11(n + 1) + snt12(n + 1) − t22(n) = 0. (45)

In fact, for the first equality of (45), from (44) and (43) we have

rnt12(n + 1) = rn(λ2 − λ1)ν1(n)ν2(n)

ν1(n)ν2(n)(λ1 − λ2) + µ2(n)ν1(n) − µ1(n)ν2(n)

= rn(λ2 − λ1)α1(n)α2(n)

α1(n)α2(n)(λ1 − λ2) + [λ2rn + α2(n)(λ2 + sn)]α1(n) − [λ1rn + α1(n)(λ1 + sn)]α2(n)

= (λ2 − λ1)α1(n)α2(n)

λ1α2(n) − λ2α1(n)

= t21(n).

Similarly, we can find that the second equality of (45) is right.
Now, by virtue of equation (42), we obtain

det Tn = (1 − t12(n))(λ − λ1)(λ − λ2). (46)

Hence, from all the above statements, we obtain following assertions.

Proposition 1. The matrix Ũn defined by (38) has the same form as Un, that is

Ũn =
(

0 1

λ̃rn λ + s̃n

)
,
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in which the transformation formulae between old and new potentials are defined by

r̃n = rn − t21(n)

1 − t12(n)
, s̃n = sn + Dt22(n) + t21(n + 1) − rn − t21(n)

1 − t12(n)
t12(n). (47)

The transformations (37) and (47): (ϕn;pn, qn) → (̃ϕn; r̃n, s̃n) is usually called a DT of
eigenvalue problem (1). And equation (47) can be called a Bäcklund transformation (BT)
between new and old potentials.

Proof. Let T −1
n = T ∗

n /det Tn and

Tn+1UnT
∗
n =

(
f11(λ, n) f12(λ, n)

f21(λ, n) f22(λ, n)

)
.

It is easy to verify that λf11(λ, n), λf12(λ, n), f21(λ, n) and f22(λ, n) are cubic-polynomials
in λ, respectively. By virtue of (40) and (41), it can be verified that λi are roots of
fij (λ, n), (i = 1, 2). Therefore, noting (46), we have

Tn+1UnT
∗
n = (det Tn)Pn = (det Tn)

(
p0

11 p0
12

λp1
21 + p0

21 λp1
22 + p0

22

)
,

where pl
ij , (i, j = 1, 2; l = 0, 1) are independent of λ. At the same time, the above equation

can be rewritten as

Tn+1Un = PnTn, (48)

i.e.

λt12(n + 1)rn = [(1 − t12(n))λ + t11(n)]p0
11λ + λt21(n),

(1 − t12(n + 1))λ + t11(n + 1) + t12(n + 1)(λ + sn) = p0
11t12(n) + p0

12(λ + t22(n)),

(λ + t22(n + 1))λrn = (
λp1

21 + p0
21

)
((1 − t12(n))λ + t11(n)) +

(
λp1

22 + p0
22

)
(λ + t22(n)),

λt21(n + 1) + (λ + t22(n + 1))(λ + sn) = (
λp1

21 + p0
21

)
t12(n) +

(
λp1

22 + p0
22

)
(λ + t22(n)).

Equating the coefficients of λi(i = 0, 1, 2) in above equations, noting equation (45), we have

p0
11 = p0

12 = 0, p0
12 = p1

22 = 1,

p1
21 = rn − t21(n)

1 − t12(n)
= r̃n,

p0
22 = sn + Dt22(n) + t21(n + 1) − rn − t21(n)

1 − t12(n)
t12(n) = s̃n.

Thus we complete the proof. �

Proposition 2. Under the transformation (47), the matrix Ṽ
{+1}
n defined by (38) has the same

form as V
{+1}
n , that is

Ṽ {+1}
n =

(
− 1

2λ − r̃n−1 − s̃n−1 1

λ̃rn
1
2λ − r̃n

)
.

Proof. Let T −1
n = T ∗

n /det Tn and

(
Tnt + TnV

{+1}
n

)
T ∗

n =
(

g11(λ, n) g12(λ, n)

g21(λ, n) g22(λ, n)

)
.
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Through direct calculation we know that g11(λ, n), λg12(λ, n), g21(λ, n) and g22(λ, n) are
cubic polynomials in λ, respectively. From (41) and (42), we have

λit12t
(n) − t11t

(n) − αi(n)t12t
(n) − αit (n)t12(n) = 0,

t22t
(n) + α−1

i (n)λit21t
(n) + α−1

i (n)λiαit (n) + α−1
i (n)αit (n)t22(n) = 0,

αit (n) = λrn + (λi + rn−1 + sn−1 + rn)αi(n) − α2
i (n).

(49)

Equations (40) and (49) tell us that λi (i = 1, 2) are roots of gij (λ, n), (i, j = 1, 2). Therefore,
noting (46), we have(

Tnt + TnV
{1}
n

)
T ∗

n = (det Tn)Rn = (det Tn)

(
r1

11λ + r0
11 r0

12

r0
21 r22λ + r0

22

)
,

that is

Tnt + TnV
{1}
n = RnTn, (50)

where rl
ij (i, j = 1, 2; l = 0, 1) are independent of λ. Comparing the coefficients of

λi(i = 0, 1, 2) in (50), noting (45), we arrive at

r1
11 = −r1

22 = −1

2
, r0

12 = 1, r0
21 = 0,

r1
21 = rn − t21(n)

1 − t12(n)
= r̃n = −r0

22,

r0
11 = − rn−1 − t21(n − 1)

1 − t12(n − 1)
− sn−1 − Dt22(n − 1) − t21(n) +

rn−1 − t21(n − 1)

1 − t12(n − 1)
t12(n − 1)

= −̃rn−1 − s̃n−1.

The proof is thus completed. �

Since the fact of equivalence between differential-difference equation (4a) and the discrete
zero-curvature equation Unt − V

{+1}
n+1 Un + UnV

{+1}
n = 0, from propositions 1 and 2, we obtain

the following theorem.

Theorem. Under the transformation

r̃n = rn − t21(n)

1 − t12(n)
, s̃n = sn + Dt22(n) + t21(n + 1) − rn − t21(n)

1 − t12(n)
t12(n).

If rn, sn solve the positive relativistic Toda type lattice equation (4a), then so do (̃rn, s̃n).

As below, an exact solution of the positive relativistic Toda type lattice equation (4a) will
be given by using DT. Substituting the trivial solution rn = sn = 1 of (4a) into (1) and (12),
we then have

ϕn+1 =
(

0 1

λ λ + 1

)
ϕn, ϕnt =

(
− 1

2λ − 2 1

λ 1
2λ − 1

)
ϕn,

from which two real basic solutions of equation (4a) are presented as

φn =
(

λ + 1 +
√

(λ + 1)2 + 4λ

2

)n

exp

(
−3 +

√
(λ + 1)2 + 4λ

2
t

)(
2

λ + 1 +
√

(λ + 1)2 + 4λ

)
,

ψn =
(
λ + 1 −

√
(λ + 1)2 + 4λ

2

)n

exp

(
−3 −

√
(λ + 1)2 + 4λ

2
t

)(
2

λ + 1 −
√

(λ + 1)2 + 4λ

)
,
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n

t

n

n

t

n

Figure 1. One-soliton solutions with λ1 = −6.5, λ2 = −6.4, γ1 = 0.6, γ2 = 0.5.

where λ ∈ R − {0}. From (41) we have

αi(n)

= ξ 2n
i exp(t

√
(λi + 1)2 + 4λi)(λi − 1 +

√
(λi + 1)2 + 4λi) − γi(λi − 1 −

√
(λi + 1)2 + 4λi)

2ξ 2n
i exp(t

√
(λi + 1)2 + 4λi) − 2γi

,

with ξi = λi+1+
√

(λi+1)2+4λi

2i√|λi | , (i = 1, 2) where i2 = −1. So the new solutions of relativistic
Toda type lattice equation (4a) by applying (47) can be shown as

r̃n = 1 +
λ1 − λ2

α2(n) − α1(n)
− α1(n)α2(n)(λ2 − λ1)

λ1α2(n) − λ2α1(n)

[
1 − λ2 − λ1

α2(n) − α1(n)

]
,

s̃n = 1 + 2
λ1λ2[α1(n)α2(n)(λ1 − λ2) + α2(n)λ1 − α1(n)λ2]

λ1λ2(α1(n) − α2(n)) + α1(n)α2(n)(λ1 − λ2)

−
[

1 − α1(n)α2(n)(λ2 − λ1)

λ1α2(n) − λ2α1(n)

]
λ1 − λ2

α2(n) − α1(n)
− λ1λ2(α1(n) − α2(n))

λ1α2(n) − λ2α1(n)
.

The plots of solutions r̃ , s̃, for equation (4a) by using DT (23) and (33) are given in
figure 1 with the parameters chosen as λ1 = −6.5, λ2 = −6.4, γ1 = 0.6, γ2 = 0.5. It is easy
to verify that the solutions of equation (4a) by DT are one-soliton solutions. Furthermore, if
the resulting solutions are taken as the new starting point, we can make the DT once again and
engender another set of new explicit solutions. This process can be done continuously and the
multi-soliton solutions result usually.

5. Summary and remarks

In this paper, based on a discrete isospectral problem, two hierarchies of nonlinear integrable
lattice equations are derived. It is shown that every equation in the resulting models is
integrable in Liouville sense. It is also shown that these two hierarchies correspond to positive
and negative power expansions concerning spectral parameter, respectively. The typical
system (4a) of the positive hierarchy (11) is relativistic Toda type lattice. In addition, with the
help of the gauge transformations of Lax pairs, a Darboux transformation is established for
the first nonlinear equations of resulting hierarchies, from which the soliton solutions result.

Searching for new integrable discrete systems is still a significant but difficult task in
soliton theory. Motivated by [10], the procedure for new lattice systems is provided again
in this study. We believe that the present study can be used for other applications even
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for more complicated spectral problems in higher order. Moreover, we should emphasize
that the mathematical and physical background as well as the deeper properties, such as the
symmetries, infinitely many conservation laws, nonlinearization and so on of the relativistic
Toda type lattice hierarchy (11) would be fulfilled in other papers.

Acknowledgments

The authors would like to express their sincere thanks to referees for their helpful suggestions.
This work was partially supported by the National Nature Science Foundation of China (grant
no. 60572113) and the foundation provided by Taishan College (no. Y05-2-01).

References

[1] Fermi E, Pasta J and Ulam S 1965 Collect Papers of Enrico Fermi II vol 978 (Chicago, IL: University of Chicago
Press)

[2] Ablowitz M and Ladik J 1975 J. Math. Phys. 16 598
[3] Tu G Z 1990 J. Phys. A: Math. Gen. 23 3903
[4] Ma W X and Xu X X 2004 J. Phys. A: Math. Gen. 37 1323
[5] Blaszak M and Marciniak K 1994 J. Math. Phys. 35 4661
[6] Zhu Z N et al 2004 J. Phys. Soc. Japan 71 1864
[7] Suris Yu B 1999 Rev. Math. Phys. 11 727
[8] Ma W X and Xu X X 2004 Int. J. Theor. Phys. 43 219
[9] Xu X X, Yang H X and Ding H Y 2005 Commun. Theor. Phys. 44 1

[10] Yang H X, Xu X X and Ding H Y 2005 Phys. Lett. A 338 117
[11] Yang H X, Xu X X and Ding H Y 2005 Chaos Solitons Fractals 26 1091
[12] Fuchssteiner B 1993 Coupling of completely integrable systems: the perturbation bundle Applications of

Analytic and Geometric Methods to Nonlinear Differential Equations ed P A Clarkson (Dordrecht: Kluwer)
pp 125–38

[13] Ablowitz M and Clarkson P 1991 Solitons, Nonlinear Evolutions and Inverse Scattering (Cambridge: Cambridge
University Press)

[14] Hu X B and Tam H H 2000 Phys. Lett. A 276 65
[15] Ma W X and You Y C 2004 Chaos Solitons Fractals 22 395
[16] Ma W X and Maruno K 2004 Physica A 343 219
[17] Matveev V and Salle M 1991 Darboux Transformation and Solitons (Berlin: Springer)
[18] Oevel W 1996 Darboux transformation for integrable lattice systems Nonlinear Physics: Theory and Experiment

ed E Alfinito, M Boiti, L Martina and F Pempinelli (Singapore: World Scientific) pp 233–40
[19] Wu Y T and Geng X G 1998 J. Phys. A: Math. Gen. 31 L677
[20] Nimmo J 2000 Chaos Solitons Fractals 11 115
[21] Ding H Y and Xu X X et al 2004 Chin. Phys. 13 125
[22] Ma W X 2003 Phys. Lett. A 316 72
[23] Ma W X 2005 J. Math. Phys. 46 3507
[24] Yang H X and Xu X X 2005 Int. J. Mod. Phys. B 13 2121
[25] Xu X X, Yang H X and Ding H Y 2006 A Liouville integrable lattice soliton equation, infinitely many

conservation laws and integrable coupling systems Phys. Lett. A 349 153
[26] Sakovich S 2005 Preprint nlin.SI./0504037

http://dx.doi.org/10.1063/1.522558
http://dx.doi.org/10.1088/0305-4470/23/17/020
http://dx.doi.org/10.1088/0305-4470/37/4/018
http://dx.doi.org/10.1063/1.530807
http://dx.doi.org/10.1143/JPSJ.71.1864
http://dx.doi.org/10.1142/S0129055X99000258
http://dx.doi.org/10.1023/B:IJTP.0000028860.27398.a1
http://dx.doi.org/10.1016/j.physleta.2005.02.021
http://dx.doi.org/10.1016/j.chaos.2005.02.011
http://dx.doi.org/10.1016/S0375-9601(00)00650-2
http://dx.doi.org/10.1016/j.chaos.2004.02.011
http://dx.doi.org/10.1016/j.physa.2004.06.072
http://dx.doi.org/10.1088/0305-4470/31/38/004
http://dx.doi.org/10.1016/S0960-0779(98)00275-6
http://dx.doi.org/10.1088/1009-1963/13/2/001
http://dx.doi.org/10.1016/S0375-9601(03)01137-X
http://dx.doi.org/10.1016/j.physleta.2005.09.020
http://www.arxiv.org/abs/nlin.SI./0504037

	1. Introduction
	2. Integrable positive and negative relativistic Toda type lattices
	3. The
	4. A Darboux transformation and soliton solutions
	5. Summary and remarks
	Acknowledgments
	References

